A Tutorial on the Dynamics and Control of Wind Turbines and Wind Farms

Lucy Pao
Richard and Joy Dorf Professor
Electrical, Computer, & Energy Engineering Department
University of Colorado at Boulder

Scientific Director
Center for Research and Education in Wind

Annual Joint IEEE RRVS, RRVS NIU Student Branch, & IEEE CSS Chapter Meeting
IEEE-RRVS, November 2009
Grateful Acknowledgement to:

Kathryn Johnson
Clare Boothe Luce Assistant Professor
Division of Engineering
Colorado School of Mines

Colorado School of Mines Site Director
Center for Research and Education in Wind

This talk is based on our joint paper:

Available at http://ecee.colorado.edu/~pao/ACC09WindTutorialSessionPresentations
Wind Energy

- Fastest growing energy source in the world
- Current global installed capacity exceeds 120,000 MW, with a projected growth of more than 20% per year for the next five years
- Wind farms today produce electrical power at a Cost-of-Energy of approximately $0.03/kWh, comparable to that of coal and natural gas based power plants

World wind energy, total installed capacity
160,000 megawatts

[data from www.wwindea.org]
Increasing Turbine Size

- Typical size of utility-scale wind turbines has grown dramatically
- Large flexible structures operating in uncertain environments [video]
- Advanced controllers can help increase energy capture efficiency and reduce structural loading
 - Decrease the cost of wind energy

Outline

- Motivation and Wind Turbine Basics
- Wind Turbine Control Loops
- Issues in Turbine Control
- Advanced Turbine Control
- Wind Farms
- Offshore Wind
- Conclusions
Vertical vs. Horizontal Axis Wind Turbines

- Vertical-axis wind turbines (VAWTs) more common among smaller turbines
- HAWTs are the most commonly produced utility-scale wind turbines
- Advantages of horizontal-axis wind turbines (HAWTs)
 - Improved power capture capabilities
 - Pitchable blades
 - Improved structural performance
Vertical vs. Horizontal Axis Wind Turbines

- Vertical-axis wind turbines (VAWTs) more common among smaller turbines
- HAWTs are the most commonly produced utility-scale wind turbines
- Advantages of horizontal-axis wind turbines (HAWTs)
 - Improved power capture capabilities
 - Pitchable blades
 - Improved structural performance
Wind Turbine Components

- Wind encounters rotor, causing it to spin
- Low-speed shaft transfers energy to the gear box
 - Steps up speed
 - Spins high-speed shaft
- High-speed shaft causes generator to spin, producing electricity
- Yaw system turns nacelle so that rotor faces into the wind

[figure courtesy of US Dept. of Energy]
Wind Turbine Design Considerations

- Upwind vs. downwind
 - Tower shadow
- Variable or fixed pitch
 - Initial cost
 - Ability to control loads and change aerodynamic torque
- Variable or fixed speed
 - Aerodynamic efficiency
 - Electrical power processing
- Number of blades

[figure courtesy of US Dept. of Energy]
Operating Regions

- **Region 1: Low wind speed (below 6 m/s)**
 - Wind turbines not run, because power available in wind is low compared to losses in turbine system

- **Region 2: Medium wind speeds (6 m/s to 11.7 m/s)**
 - Variable-speed turbine captures more power
 - Fixed-speed turbine optimized for one wind speed (10 m/s)
 - Max difference in example curves is 150 kW.
 - For typical wind speed distributions, in this example, variable-speed turbine captures 2.3% more energy than constant-speed turbine

- **Region 3: High wind speeds (above 11.7 m/s)**
 - Power is limited to avoid exceeding safe electrical and mechanical load limits
Outline

- Motivation and Wind Turbine Basics
- Wind Turbine Control Loops
 - Wind Inflow
 - Sensors
 - Actuators
 - Torque Control
 - Pitch Control
- Issues in Turbine Control
- Advanced Turbine Control
- Wind Farms
- Offshore Wind
- Conclusions
Wind Turbine Control Loops

Wind

Desired Rotor Speed \(\omega_d \)

 Pitch Controller

 Torque Controller

 Speed Sensor

 Pitch Motor

 Load Torque

 Power Converter

 Rotor Speed

 \(\omega_e \)

 \(\omega \)
Wind Inflow

- Differential heating of atmosphere is driving mechanism for earth’s winds
- Numerous phenomena affect wind inflow across a wind turbine’s rotor plane
 - Sea breezes
 - Frontal passages
 - Mountain and valley flows
 - Nocturnal low-level jet
- Rotor plane of MW utility-scale turbines span from 60m to 180m above the ground
- Virtually impossible to obtain a good measurement of the wind speed encountering the entire span of blades

[Figure courtesy of R. Banta, Y. Pichugina, N. Kelley, B. Jonkman, and W. Brewer]

Hourly profiles of mean wind speed after sunset on 15 Sept 2003
Characterizing the Wind

- **Average wind speed**
 - Spatial
 - Temporal

- **Frequency distribution of wind speeds**
 - Spatial
 - Temporal

- **Prevailing wind direction**
 - Frequency of other wind directions

- **Capacity Factor**
 \[
 \text{CF} = \frac{\text{actual energy output over time period}}{\text{energy output if turbine operated at max output over same time period}}
 \]

\[
f(w) = k \frac{w^{k-1}}{c^k} \exp \left(-\left(\frac{w}{c} \right)^k \right)
\]

- \(c\) : scale parameter
- \(k\) : shape parameter

Example Weibull Distributions:
- \(k = 1.5\)
- \(k = 2\)
- \(k = 2.5\)
- \(k = 3\)
Wind Turbine Control Loops

Wind

Pitch Motor

Pitch Angle

Load Torque

Power Converter

Rotor Speed

Speed Sensor

Torque Controller

Pitch Controller

Desired Rotor Speed ω_d

Torque ω_e

turbine axis

instantaneous wind field

Walk Around the Loops
Sensors

- Rotor speed measured on either high-speed (generator) or low-speed (rotor) shafts
 - Gear box ratio known
- Anemometers used for supervisory control purposes
 - Usually located on nacelle behind rotor plane
 - Poor measurement of wind

[figure courtesy of US Dept. of Energy]
Sensors

- Rotor speed measured on either high-speed (generator) or low-speed (rotor) shafts
 - Gear box ratio known
- Anemometers used for supervisory control purposes
 - Usually located on nacelle behind rotor plane
 - Poor measurement of wind
- Power measurement devices

Several types of sonic and propeller anemometers on a meteorological tower at NREL's NWTC

[Photo courtesy of L. J. Fingersh, NREL]
Additional Sensors

- **Strain gauges**
 - Tower
 - Blades

- **Accelerometers**

- **Position encoders**
 - Drive shaft
 - Blade pitch actuation systems

- **Torque transducers**
Wind Turbine Control Loops

Wind

Desired Rotor Speed ω_d

Pitch Controller

Torque Controller

Speed Sensor

Pitch Motor

Power Converter

Load Torque

Pitch Angle

Rotor Speed

Speed Sensor

Torque Controller

Pitch Controller

Wind Turbine Control Loops

Walk Around the Loops
Actuators

- **Yaw motor**
 - Slow (usually < 1 deg/s)

- **Generator**
 - Fast (time constant usually > 10x that of rotor speed)

[figure courtesy of US Dept. of Energy]
Actuators

- **Yaw motor**
 - Slow (usually < 1 deg/s)

- **Generator**
 - Fast (time constant usually > 10x that of rotor speed)

Inside the Nacelle of the 3-Bladed Controls Advanced Research Turbine (CART3) at NREL's National Wind Technology Center (NWTC)

CART3 is a 600 kW wind turbine with a 40 m rotor diameter that is used at NREL's NWTC as an experimental test bed for advanced controllers.

[Photo courtesy of L. J. Fingersh, NREL]
Actuators

- **Yaw motor**
 - Slow (usually < 1 deg/s)

- **Generator**
 - Fast (time constant usually > 10x that of rotor speed)

- **Blade pitch motor**
 - Fast
 - Up to 18 deg/s for 600 kW turbines
 - Up to 8 deg/s for 5 MW turbines
 - Collective vs. Individual Pitch

Three pitch motors on the CART3

[CART3 is equipped with independent blade pitch capability.

[Photo courtesy of L. J. Fingersh, NREL]
More on Actuators

- Operational blade pitch angle data from CART2:
 - CART2 is a 2-bladed, 600 kW wind turbine with a 43 m diameter rotor at NREL’s NWTC
 - Data from a normal shut-down event caused by the wind speed decreasing into Region 1
 - Pitch rate limited to approx 5 deg/s
 - Lag between commanded and actual pitch can be represented by a 1st-order filter

- Teetering hinge on 2-bladed turbines
 - Allows rotor to respond to differential loads when blades in vertical position
Torque Control

Wind

Pitch Motor

Pitch Angle

Load Torque

Torque Controller

Power Converter

Speed Sensor

Rotor Speed

Desired Rotor Speed \(\omega_d \)

\(\omega_e \)

Instantaneous wind field

turbine axis

Walk Around the Loops
“Standard” Torque Control

Tip-speed ratio: \(\lambda = \frac{\omega R}{w} \)

\[
\tau_c = K \hat{\omega}^2
\]

\[
K = \frac{1}{2} \rho \pi R^5 \frac{C_{p_{\text{max}}}}{\lambda_*^3}
\]

- \(\tau_c \) = generator (control) torque
- \(\hat{\omega} \) = measured rotor speed
- \(\rho \) = air density
- \(R \) = rotor radius
- \(C_{p_{\text{max}}} \) = maximum power coefficient
- \(\lambda_* \) = optimum tip-speed ratio
Torque Control: Perfect Measurements

- When measurements are perfect and turbine is perfectly modeled, “standard” torque control leads to optimal operation in the steady-state.

\[\dot{\omega} = \frac{1}{J} \left(\tau_{\text{aero}} - \tau_c \right) \]

\[\dot{\omega} = \frac{1}{2J} \rho \pi R^5 \omega^2 \left(\frac{C_p}{\lambda^3} - \frac{C_{p_{\text{max}}}}{\lambda_{*}^3} \right) \]

\[C_p < \frac{C_{p_{\text{max}}}}{\lambda_{*}^3} \lambda^3 \implies \dot{\omega} < 0 \]

\[C_p > \frac{C_{p_{\text{max}}}}{\lambda_{*}^3} \lambda^3 \implies \dot{\omega} > 0 \]
Torque Control Summary

- Data from CART2
- Key features of standard torque control
 - Nonlinear
 - Only required measurement is rotor speed
 - Saturates at rotor speeds near rated
- Speed regulation achieved via pitch control
Pitch Control

Pitch Control

Torque Controller

Pitch Motor

Pitch Angle

Load Torque

Power Converter

Rotor Speed

Desired Rotor Speed ω_d

Instantaneous wind field

turbine axis

Wind

ω_e

Walk Around the Loops
PID Pitch Control

- Speed regulation at high winds typically achieved using PID pitch control
 - ω_e = error in rotor speed
 - ω_d = desired rotor speed
 - β_c = control pitch angle

- Pitch rate actuation limits may be up to 8 deg/s
Pitch Control Variations

- Derivative term may be filtered to reduce measurement noise errors
- K_P, K_I, and K_D may be gain scheduled due to system nonlinearities
- Pitch control signal can be given as angle or rate of change
- Pitch control may be collective or independent
 - MIMO control options available
Pitch and Torque Control

- **Pitch control saturated below rated**
 - Saturation value chosen to optimize energy capture

- **Pitch and torque control loops complement each other**
Outline

- Motivation and Wind Turbine Basics
- Wind Turbine Control Loops
- Issues in Turbine Control
 - Size
 - Multiple control loops
 - Control while stopped
 - Modeling inaccuracies
- Advanced Turbine Control
- Wind Farms
- Offshore Wind
- Conclusions
Increasing Turbine Size

- Increased flexibility may lead to structural vibrations
 - Tower motion (fore-aft and side-to-side)
 - Drive train torsion
 - Blade bending and twisting

- Rotor is larger than some “coherent” wind turbulence structures
 - Requires individual blade pitch control

Multiple Control Loops

- Transition between regions 2 and 3 sometimes leads to maximum turbine loads
- Switching between torque and pitch control may exacerbate problem
- CART2 field data during a bad transition
Control while Stopped

- Supervisory control may stop turbines due to faults or high winds
- Little active control usually performed while stopped
 - Yaw control may still be performed to point turbine into the wind
- Extreme loads may occur during “parked” conditions, usually in high winds
- Fault detection and health monitoring are also of interest
Modeling Inaccuracies

- Torque control assumes perfect knowledge of the turbine’s C_p surface
 - Errors can be costly

- Effect of a 5% modeling error in the optimal tip speed ratio
 - Energy loss of around 1% - 3% in Region 2
 - Assume we reach DOE’s 20% Wind Energy by 2030 goal
 - requires ~300 GW of installed capacity
 - Assume the cost of energy is $0.03 per kilowatt-hour (kWh)
 - Thus, a 1% loss of energy is equivalent to a loss of $630 million per year
Advanced Control Strategies

- Adaptive control
- Feedforward control
 - Using wind speed estimates
 - Using wind speed measurements
- Lots of others under development
Advanced Blades

- New configurations and actuators under development
 - Multiple pitch actuators per blade
 - Will allow different pitch angles at different radial positions
 - Microtabs
 - Will change aerodynamic forces
 - Air valves
 - Will change aerodynamic forces

- Advanced blade concepts will likely require new control systems
Outline

- Motivation and Wind Turbine Basics
- Wind Turbine Control Loops
- Issues in Turbine Control
- Advanced Turbine Control
- Wind Farms
- Offshore Wind
- Conclusions
Wind Farm Considerations

- Wind farms can take advantage of economies of scale
- May differ from individual turbines in:
 - noise
 - safety
 - visual
 - environmental effects
Wind Farm Layouts and Control

- Control focuses
 - Electricity
 - Aerodynamics

- Control goal is to maximize “array efficiency” given existing configuration
Advantages to offshore wind

- Wind resource typically higher and more consistent
- Turbine size is not limited by transportation constraints
- Visual and noise effects can be avoided more easily
- More area available, especially near population centers
U.S. has relatively more deep water near the shoreline than Europe, so more floating turbines are likely in the U.S.

[Image courtesy of NREL]
Floating Platforms

- Floating platform configurations have been borrowed from offshore oil rig technologies.

Image courtesy of NREL
Offshore Wind Challenges

- Waves can excite structural modes for both floating and fixed offshore turbines
- Deep water anchors are expensive
 - U.S. has more deep water near population centers than Europe
- What is the best way to control a floating inverted pendulum with a large spinning mass at its top?
 - What actuators are necessary?
 - How will control affect the energy capture?
Conclusions

- Large, flexible turbines lend themselves to control solutions, and turbines are getting larger and more flexible
- Existing turbine controllers tend not to take advantage of the wealth of available control theory
 - Industry has been slow to adopt advanced control strategies for both individual turbines and wind farms
- Offshore wind turbine control is a big prospective area for research
Thank You